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Abstract
Observations utilizing optical and x-ray techniques of coexisting magnetoelec-
tric, piezoelectric and magnetic modifications in gallium ferrate (GaFeO3) are
successfully analysed with an atomic model that complies with the established
chemical structure and the motifs of spontaneous polar and ferrimagnetic order.
Electron variables in the corresponding scattering length, which is common to
an analysis of dichroism and diffraction, are expressed as multipoles for charge,
magnetic, magnetoelectric and polar electron degrees of freedom. Polar and
magnetoelectric multipoles are parity-odd and cannot exist in a compound with
a centrosymmetric structure. Magnetoelectric multipoles are time-odd and van-
ish with loss of long-range magnetic order. Dichroic signals measured in the
energy region 1.0–2.5 eV and near the Fe K edge are consistent with a sum of
magnetochiral and non-reciprocal linear signals caused by magnetoelectric mul-
tipoles in E1–M1 and E1–E2 absorption events. Resonant x-ray Bragg diffrac-
tion near the Fe K edge shows interference not previously reported between
Thomson scattering and resonant E1, M1 and E2 processes.

1. Introduction

Spontaneous polar and magnetic order coexist in gallium ferrate (GaFeO3). The multiferroic
properties of the compound have been extensively studied since 1960, when it was first prepared
and characterized [1], by many different experimental techniques. Collinear ferrimagnetism [2]
develops below a critical temperature Tc ≈ 200 K, which depends on the relative concentrations
of gallium and iron. Rado [3] observed a large linear magnetoelectric effect, and the induced
polarization is normal to the applied magnetic field.

The non-centrosymmetric structure of GaFeO3 has an orthorhombic unit cell with a ≈ 8.8,
b ≈ 9.4 and c ≈ 5.1 Å, that belongs to the C2v polar crystal class, and a magnetic point
group m ′2′m [4]. The space group is Pc21n which indicates a spontaneous polarization along
the b-axis. Below Tc, antiferromagnetically coupled Fe magnetic moments align along the
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c-axis, with Pc′2′
1n the magnetic space group [2]. The compound is a ferrimagnet because Fe

occupations at Fe-rich sites are slightly different.
Quite recently, untwinned large single crystals of GaFeO3 have been prepared [5] and

studied by both optical and x-ray techniques [6–8]. Studies made with instruments at the Photon
Factory (KEK, Japan), with linearly polarized x-rays, include measurements near the Fe K edge
of dichroic signals [6] and resonant Bragg diffraction [8]. In all the experiments, the sample
was subjected to an alternating magnetic field, parallel to the magnetic easy axis, and data sets
collected in fields of opposite polarity were subtracted. Such difference data are proportional to
time-odd multipoles that vanish in the absence of long-range magnetic order. The crystal was
initially held at a temperature of 50 K. Difference data were found to continuously diminish in
intensity with increasing temperature of the sample and to vanish above Tc.

We find that, the dichroic signals measured in the x-ray region and the optical region
(an energy region of 1.0–2.5 eV) can be attributed to a sum of two non-reciprocal signals
that are often called magnetochiral dichroism (MχD) and non-reciprocal linear dichroism
(NRLD) [9–12]. Observed signals are therefore a direct measure of the Fe anapole, and other
magnetoelectric multipoles that are both parity-odd and time-odd. The observed resonant x-ray
Bragg diffraction [8] is possibly even more intriguing because it appears to reveal interference
between parity-odd events in the Fe pre-edge region, where E2 events hold sway, and the region
of main absorption delivered by E1 events.

Our work on gallium ferrate uses the established structural [4] and magnetic
symmetry [2, 5] to construct an atomic model of the compound. We then calculate structure
factors for parity-even events (E1–E1 and E2–E2) and parity-odd events (E1–M1 [9, 11, 13] and
E1–E2). The corresponding scattering length provides estimates of integrated dichroic signals
and, also, Bragg diffraction intensities [13, 14] that can be directly compared to observations
on GaFeO3.

2. Model structure factors

Time-odd or magnetic properties of GaFeO3 are attributed to ferric (3d5) Fe3+ ions. The Fe
moment is pure spin, to a very good approximation. The spin–orbit coupling can add a small
amount of orbital moment to the S = 5/2 spin moment by mixing 6S and 4P terms, for example.

There are four cations in the asymmetric unit of the orthorhombic unit cell and the occupied
sites (Wyckoff 4a in space group No. 33) have no point symmetry. In the unit cell illustrated
in figure 1 there are two groups of almost octahedrally coordinated, inequivalent Fe sites with
occupation probabilities p1 = 0.77 and p2 = 0.70. One of the two Ga groups, Ga2, is also
octahedrally coordinated with Fe occupancy p3 = 0.35, whereas Ga1 (p4 = 0.18) has an almost
tetrahedral oxygen coordination. In our future working we ignore the tetrahedrally coordinated
Fe ion because of its relatively small contribution to physical quantities of interest.

Cation sites in an orthorhombic cell are at positions (x, y, z), (−x, 1/2 + y,−z), (1/2 +
x, 1/2 + y, 1/2 − z) and (1/2 − x, y, 1/2 + z). Let (x, y, z) be our reference site and consider
the remaining sites, labelled 2, 3, and 4, in the order in which they are given. Environments
at sites 1 and 2 are related through a rotation by π about the b-axis, C2b. Sites 3 and 4 are
related to the environment of site 1 by mirror planes mc and ma normal to the c- and a-axis,
respectively, and a mirror plane operation is the product of inversion and a rotation by π about
the axis normal to the plane. All Fe magnetic moments in a cell are observed to be parallel to
the c-axis [5], and this configuration of moments is achieved, with reference to site 1, by the
addition of the time-reversal operator at sites 2 and 4.

A multipole is the expectation value, or time average, of a spherical tensor operator and we
denote the expectation value by angular brackets about the operator. The expectation value is
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Figure 1. Crystal structure, in the a–b plane, of GaFeO3 showing the positions and environments
of Ga1, Ga2, Fe1 and Fe2 ions. The y parameter of Ga1 is set to zero. Displacements along the
b direction of Ga2 and Fe2 are opposite to the displacement along the b direction of Fe1. Iron
magnetic moments (not shown) are normal to the plane of the figure, and moment directions at sites
Ga2 and Fe2 are opposite to the moment direction at Fe1.

(This figure is in colour only in the electronic version)

calculated with a valence state which accepts the photo-ejected electron in a specific absorption
event, and thus a multipole is an equilibrium property of the ground state of the compound.
Multipoles that describe parity-even events are not changed by the inversion operation. For this
class of multipoles, there is a one to one correspondence between the multipole’s rank, labelled
by an integer K , and the behaviour of the multipole with respect to the reversal of time, namely,
even (odd) rank multipoles are time-even (time-odd).

Our structure factor is created by the sum of four cation multipoles in an orthorhombic
cell. If 〈T K

Q 〉 is the parity-even multipole for the Fe ion at site 1 in the cell,

�K
Q = {1 + (−1)k+Q} {〈T K

Q 〉 + 〈T K
−Q〉} . (2.1)

In the structure factor (2.1) we have included spatial phase factors that arise for Bragg
diffraction at reflections (0k0) where the Miller index k is an integer. Note that �K

Q is an even
function of the projection Q (−K � Q � K ) and it vanishes for even k and odd Q. Complex
conjugation satisfies 〈T K

Q 〉∗ = (−1)Q〈T K
−Q〉 and this property is common to all multipoles we

use.
There are two classes of parity-odd multipoles. Multipoles 〈U K

Q 〉 are time-even and called
polar, and 〈G K

Q〉 are time-odd and called magnetoelectric. In particular, 〈G1
Q〉 is the anapole

moment whose components are related to the expectation value of the vector product of the
orbital magnetic moment and the polarization, or electric field.

Parity-odd structure factors are

�
K ,u
Q = {1 − (−1)k+Q} {〈U K

Q 〉 − (−1)K 〈U K
−Q〉} (2.2)

and

�
K ,g
Q = {1 − (−1)k+Q} {〈G K

Q〉 + (−1)K 〈G K
−Q〉} . (2.3)

Properties of note include: the difference between the structure factors (2.2) and (2.3)
arises because of the configuration of magnetic moments, and �K ,g

Q vanishes in the absence
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Table 1. Structure factors for Thomson scattering by gallium ferrate, Fc = F ′
c + iF ′′

c include
contributions from all cations and anions in the unit cell, and they are expressed in units of re .
Dispersion terms for Fe do not appear here because they are included in the resonant contributions
to scattering. Debye–Waller factors are not used in our calculations of Fc for their effect is entirely
negligible. Components in A = A′ + iA′′ and B = B ′ + iB ′′ are calculated from expression (2.8).

(020) (040) (040)

F ′
c −6.78 81.50 87.65

F ′′
c −45.31 109.93 −103.55

A′ −0.45 −0.09 −0.09
A′′ 0.03 1.68 −1.68
B ′ 1.23 −0.66 −0.66
B ′′ 1.30 −0.34 0.34
A′ F ′

c + A′′ F ′′
c 1.70 177.02 165.72

−A′ B ′′ + A′′ B ′ 0.61 −1.13 1.13

of long-range magnetic order; parity-odd structure factors vanish for even k + Q; �K ,u
−Q =

−(−1)K�
K ,u
Q and �K ,g

−Q = (−1)K�
K ,g
Q .

Structure factors (2.1)–(2.3) are used for the Fe ions in group 1, Fe1. X-ray and neutron
diffraction studies reveal that Fe magnetic moments at Fe2 sites and at Ga2 sites align along
the c-axis in the opposite direction to the moments at Fe1 sites, and the signatures for magnetic
moments also applies to polarizations found along the b-axis. In consequence, bulk electric and
magnetic properties associated with the three groups of inequivalent cations, Fe1, Fe2 and Ga2,
can be described in terms of the structure factors (2.1)–(2.3) and three structure factors derived
from them by a rotation through π about the a-axis, C2a . The property C2a�

K
Q = (−1)K�K

−Q
actually holds for any spherical tensor. Adding structure factors for the three inequivalent
groups of cations, together with spatial phase factors appropriate for the reflection (0k0), we
arrive at our working model that is specified by four structure factors,

�K
Q → A�K

Q with even K , (2.4)

�K
Q → B�K

Q with odd K , (2.5)

�
K ,u
Q → B�K ,u

Q , (2.6)

�
K ,g
Q → A�K ,g

Q . (2.7)

For reflections of the type (0k0), the complex quantities A and B in these model structure
factors are

A

B

}
= p1 exp(iφ1)± {p2 exp(iφ2)+ p3 exp(iφ3)}, (2.8)

where φ j = 2πky j and y1 = 0.5827, y2 = 0.7992 and y3 = 0.3067. Some values of A and B
are listed on table 1.

Our model of gallium ferrate, which is defined in terms of (2.4)–(2.8), is fully compliant
with elements of symmetry in the space group Pc21n and, also, the established signatures of
polar and magnetic order, although the model falls short of recognizing differences between
cation environments in the three groups of cations. Of note is empirical evidence that Fe1 and
Fe2 ions are located in distorted oxygen octahedra with different displacements from the centre
of the octahedron along the b-axis estimated at +0.26 Å and −0.11 Å, respectively [5].
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3. Bulk properties

Bulk properties of interest are related to structure factors in (2.4)–(2.7) evaluated with the Miller
index k = 0, for which A = 1.82 and B = −0.28.

The bulk ferrimagnetic moment is proportional to (2.5) with K = 1 and it can be different
from zero for Q = 0. The bulk magnetization in our model is therefore parallel to the axis
of quantization, which coincides with the c-axis. Polar and anapole order parameters are
proportional to (2.6) and (2.7) with K = 1, respectively. Both (2.6) and (2.7) with K = 1
vanish unless Q = ±1, and the electric polarization is parallel to the b-axis and the anapole
moment is parallel to the a-axis.

Structure factors for bulk properties are also directly related to dichroic signals. We shall
now switch attention to dichroism and discuss data gathered in the optical and x-ray regions
with an alternating magnetic field applied along the c-axis and normal to the direction of the
photon beam [6, 7].

4. Dichroic signals

For parity-even events E1–E1 and E2–E2, dichroic signals that couple to time-odd electron
properties are allowed when helicity (Stokes parameter P2) is present in the photon beam.
In the measurements we aim to analyse [6, 7], only linear polarization is present, P2 = 0,
and subtraction of data collected in magnetic fields of opposite polarity singles out time-odd
electron properties in the signals. Dichroic signals that are allowed under these experimental
conditions include signals that are created in parity-odd events, with the electric dipole process
(E1, parity-odd) in tandem with an electric quadrupole process (E2, parity-even) [9, 10, 14] or
a magnetic dipole process (M1, parity-even) [9, 11, 13]. In both events, E1–M1 and E1–E2,
time-odd electron properties manifest themselves in magnetoelectric multipoles, 〈G K

Q〉, and

their structure factors �K ,g
Q defined through (2.7) and (2.8).

Radial integrals are important factors in determining signal strengths. An E1 process
contributes the integral {R}sp and an E2 process contributes {R2}sd, where the subscripts are
appropriate in the context of the current application to s-, p- and d-type orbitals. We will
measure these integrals in units of the Bohr radius, a0. The M1 process between stationary
states of an isolated ion is forbidden because the radial overlap of initial and final states in
the process is zero, on account of their orthogonality. For an M1 process in a compound,
the radial integral, denoted here by {1}γ γ , is an overlap of two orbitals of the same angular
momentum, γ , with components which may be centred on different ions. The magnitude of
{1}γ γ is essentially a measure of configuration interactions and bonding, or covalency, of a
cation and ligands. In order to express various contributions to a dichroic signal in the same
unit, the classical radius of the electron re = α2a0, we are obliged to introduce to E1–E2 and
E2–E2 events a dimensionless factor (m�a2

0/h̄
2) where � is the energy of the photon event.

We use axes (xyz) to describe the experimental apparatus. Let the direction of the photon
beam, with a wavevector q, define the z-axis and choose the x-axis parallel to linear polarization
with Stokes parameter P3 = +1, which is often called σ -polarization [14].

Field differences in dichroic signals are denoted by�Z(E1–M1) and�Z(E1–E2) and we
choose to express them as

�Z(E1–M1) = (q{R}sp{1}γ γ )�F(E1–M1)

and

�Z(E1–E2) = (q{R2}sd{R}sp/a
2
0)(m�a2

0/h̄
2)�F(E1–E2).
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Following calculations reported in [13, 14], appropriate expressions for the key, dimensionless
quantities �F(E1–M1) and �F(E1–E2) are

�F(E1–M1) = −q̂
{√

2�1,g
0 + iP3(�

2,g
+2 −�

2,g
−2 )

}
(4.1)

and

�F(E1–E2) = q̂(
√

3/5)
{
�

1,g
0 − √

(2/3)�3,g
0

} + q̂ P3(1/2)
{
i(�2,g

−2 −�
2,g
+2 )

+ √
2(�3,g

−2 +�
3,g
+2 )

}
. (4.2)

Contributions to (4.1) and (4.2) which are independent of linear polarization represent
magnetochiral dichroism (MχD) and remaining contributions represent non-reciprocal linear
dichroism (NRLD).

Rotation of the sample about the direction of the beam, q, does not change MχD. This
follows because rotation of a spherical tensor by ψ about the z-axis (which is the component 0
in the spherical basis) does nothing more than multiply the tensor by a phase factor exp(iQψ)
and for MχD one has Q = 0. NRLD has projections Q = ±2 and thus rotation of the sample
by π/2, say, about q changes the sign of NRLD. Rotation of the sample by π about either x- or
y-axis changes the sign of �F(E1–M1) and �F(E1–E2). To see this first consider rotation
by π about the x-axis, and recall from section 2 that the operation C2x (=C2a) applied to a
spherical tensor results in a change in sign of its projection and a phase factor (−1)K . When
applied to (4.1) or (4.2), C2x does nothing more than produce an overall change of sign. The
operation of C2y on a spherical tensor is the same as C2x apart from an additional phase factor
(−1)Q = 1 where the equality is correct for Q = 0,±2.

Applied to GaFeO3, we anticipate that expression (4.1) for the integrated E1–M1 dichroic
signal represents observations of dichroism in the optical region [7], and that expression (4.2)
for the integrated E1–E2 dichroic signal represents observations made in the vicinity of the
Fe K edge [6]. Properties of magnetoelectric signals with respect to rotations of the sample,
which are reviewed in the preceding paragraph, are certainly fully consistent with observations.
In both experiments, a single crystal was mounted with its a-axis parallel to the beam and an
alternating magnetic field parallel to the c-axis.

For this setting of the crystal and an E1–M1 event, MχD and NRLD, respectively, are
proportional to �1,g

0 = 4A〈G1
a〉 with 〈G1

a〉 the component of the anapole moment parallel to
the crystal a-axis, and i(�2,g

+2 −�2,g
−2 ) = −8A Im〈G2

+1〉abc with the imaginary part of 〈G2
+1〉abc

the zy-component of the magnetoelectric quadrupole moment. In the optical region [7], the
sign of the observed magnetoelectric multipoles was reversed by a rotation of the crystal by π
about the field direction normal to q. In addition, use of unpolarized light (P3 = 0) isolated
the MχD contribution. The two contributions to �F are separated by adding and subtracting
spectra reported for orientations of the crystal that differ by a rotation of π/2 about the a-axis,
since the rotation leaves MχD unchanged while the NRLD contribution changes sign. An
E1–M1 event is held accountable for circular dichroism previously observed with molecules in
random orientation [15]. In this case, the observed signal is created by parity-odd and time-even
multipoles, 〈U K

Q 〉.
Should the cation site be a centre of inversion symmetry both MχD and NRLD are

forbidden, whether one uses a crystal field or the molecular orbital method or some combination
of the two. Even so there is merit, by way of an orientation, in considering symmetry properties
of the electronic factor in the dichroic signals (4.1) and (4.2) when the six ligand ions form a
regular octahedron and the symmetry is exactly cubic, with elements of symmetry in the full
cubic group Oh. In this hypothetical case, of full cubic symmetry, factors in MχD and NRLD
attributed to the sample transform as the �4− and �5+ representations, respectively [16]. �4−
is spanned by z, etc and �5+ is spanned by functions xy, etc. Behaviour of the signals with
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respect to rotations of the sample relative to the apparatus, mentioned above, can be deduced
from these functions. For the optical and x-ray regions, events of interest are allowed for
augmented valence states formed by admixing p and d orbitals on the central atom with ligand
orbitals. Admixtures permitted in full cubic symmetry have central atom 4p states admixed
with ligand s and p orbitals (σ are hybrid s–p ligand orbitals, and π are p ligand orbitals) and
central atom 3d states admixed with ligand p orbitals (π ) and s and p orbitals (σ ). If cation
sites contain no centre of symmetry, which is the case for GaFeO3, the crystal-field potential
contains an odd part that mixes orbitals of opposite parity [17]. States in the pre-edge region of
admixed s–p–d symmetry with increasing energy likely become pure s-like and, finally, pure
p-like.

5. Resonant Bragg diffraction

In the diffraction experiment of interest [8], the primary σ -polarization is normal to the plane
of scattering and parallel to the magnetic easy axis of the sample, GaFeO3. No analysis was
applied to states of polarization in the secondary beam and, thus, the detector recorded all
possible states, σ ′–σ and π ′–σ . An alternating field operates along the easy axis. The crystal
was oriented for reflections (0k0) where k is an even integer, and the reflections are allowed by
the space group.

The x-ray scattering length calculated to first order in the small quantity E/mc2, where
E is the x-ray energy, is a sum of three amplitudes [18] with the leading part from Thomson
scattering by electron charges. The Thomson amplitude is denoted by Fc and it is different
from zero in all observed reflections. A second amplitude depends on E just through E/mc2

and it is due entirely to the scattering of photons by electron spins. The third amplitude can
enhance scattering when E coincides with the energy of an atomic resonance. Fc plus the
resonant amplitude is identical to the Kramers–Heisenberg result, in the absence of electron
spin, s. The spin does contribute in the resonant amplitude, where it appears in the current
operator = {p + ih̄s × q} exp(iq · R), with p the momentum conjugate to the position R of an
electron.

The non-resonant spin amplitude is proportional to the vector product of primary and
secondary polarization vectors projected on to the spin magnetization, here parallel to the
primary polarization. The projection is identically zero, of course. The appropriate scattering
length for the experiment is just the sum of Fc and the resonant amplitude, which explicitly
includes the spin magnetization. The orbital angular momentum of an electron, R × p, appears
in the resonant amplitude with the development in powers of q of the current operator, where it
appears alongside the E2 process.

To make sense of their data, Arima et al [8] use a spin amplitude which is a sum of spin
contributions to the current operator, extracted from the resonant amplitude by taking the limit
E → ∞ [19], and the non-resonant spin amplitude that is actually zero in their experiment. Di
Matteo and Joly [20], in their analysis of the diffraction data, follow Arima et al [8] in using
the same spin amplitude and fail to get agreement with data.

Arima et al [8] find resonance enhanced diffraction at the pre-edge to Fe K-shell
absorption, and the enhancement is attributed to an E2 process. Using structure factors for our
model, calculations outlined in appendix demonstrate that there is no contribution to diffraction
from the parity-even event E2–E2 in the rotated channel of polarization, π ′–σ , and the same,
null result in the π ′–σ channel is obtained for all events under consideration. The E2–E2
event provides scattering in the unrotated channel of polarization, σ ′–σ , with contributions
from electron charge and magnetization. Also, the E1–E2 event provides scattering in this
channel with contributions from polar and magnetoelectric multipoles. In the vicinity of the E2

7
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resonance at an energy�2, the scattering length is of the form Fc +d2{Z(E2–E2)+ Z(E1–E2)}
with d2 = �2/[E − �2 + i�2/2], plus a contribution from the E1 process at the higher
energy �1. The non-resonant spin amplitude does not appear in our scattering length because
it is identically zero when the spin magnetization is parallel to the primary polarization, as we
mentioned before.

The E1–E1 event contributes charge scattering in the σ ′–σ channel but there is no magnetic
(time-odd) scattering for primary σ -polarization. We find it is essential to a successful analysis
to include the E1–M1 event with vital roles played by both contributions to the event, polar and
magnetoelectric. The E1–M1 event can contribute in the σ ′–σ channel, and it is forbidden in the
π ′–σ channel. In total, the contribution made by E1 processes to the σ ′–σ channel scattering
length is d1{Z(E1–E1)+ Z(E1–M1)} where d1 = d ′

1 + id ′′
1 ≈ d ′

1 with the approximation good
for �1 −�2 
 �1.

Calculations with our model, which are reported in appendix, reveal that

Z(E1–E1) = Ahc,

Z(E1–M1) = iBhu + Ahg,

Z(E2–E2) = A fc + iB fm

and

Z(E1–E2) = iB fu + A fg,

with the complex factors A and B defined in (2.8), and f s and hs purely real multipoles of the
type indicated by subscripts. The calculations also provide the dependence of hs and f s on
the Bragg angle, θ . We find hu ∝ sin θ , hg ∝ cos θ , fc ∝ cos 2θ , fm ∝ sin 2θ , fu ∝ sin θ ,
fg ∝ cos θ , and hc is a constant independent of θ . All the foregoing proportionalities are
correct, apart from that for fc which depends on negligible angular anisotropy in the charge
distribution of the S-state Fe ions.

Intensity of a resonance enhanced Bragg reflection found in the unrotated channel of
polarization, σ ′–σ , is

I = |Fc + d2{Z(E2–E2)+ Z(E1–E2)} + d1{Z(E1–E1)+ Z(E1–M1)}|2. (5.1)

In this expression, complex quantities are A, B , d2 and Fc and they are all expressed with the
phase relation in A = A′ + iA′′ with A′ and A′′ purely real.

The quantity reported by Arima et al [8] is the difference in I measured in applied fields of
opposite polarity. This difference in intensities, �I , contains many terms but the dependence
of �I on x-ray energy is simplified by the mutual cancellation of all terms of the form d ′

2d ′′
2 .

By construction, �I is proportional to time-odd multipoles whose sign is that of the applied
field. Of these time-odd multipoles, we anticipate fm is very small, because for an event at the
K edge fm is proportional to the orbital moment of the resonant 3d transition ion [21] which
here is an S-state ion Fe3+.

Taking fm = 0 leaves �I proportional to sums of fg and hg . As shown in appendix,
these parity-odd multipoles, together with fu and hu , undergo in I a change of sign when the
crystal is rotated by π about the field direction, normal to the plane of scattering, and likewise
our expression for �I succumbs to the change of sign. The specified rotation of the crystal
takes the setting for the reflection (0k0) to the setting for (0k̄0). The described behaviour of
�I is in complete accord with observations. Data reported for the Bragg reflections (040) and
(04̄0) [8], and reproduced in figure 2, show that �I at the two reflections are essentially equal
in magnitude and opposite in sign. In our calculation, magnitudes of �I at (040) and (04̄0) are
different because of expected differences in Fc at the two reflections, which are illustrated in
table 1.
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Figure 2. Experimental data for �I/I shown here for gallium ferrate are reported by Arima et al
[8]. The sample temperature is 50 K, and intensities are for reflections (0k0) with Miller indices
k = 2, 4 and −4. Continuous curves are �I/2|Fc |2 with �I calculated from the expression (5.2).
Quantities needed in J are listed in table 1.

Our expression for �I with the simplifications fu = fg = 0, in keeping with fm = 0,
is in excellent agreement with experimental data. Figure 2 contains the function �I/2|Fc|2
evaluated for the reflections (020), (040) and (04̄0) where

�I = 4d ′
1hg{J + fc|A|2d ′

2} (5.2)

and

J = A′F ′
c + A′′F ′′

c + d ′
1[hu(−A′B ′′ + A′′ B ′)+ hc|A|2].

The dependence of �I on E is d ′
2 = �2(E −�2)/[(E −�2)

2 + (�2/2)2] with �2 = 7113.5
and �2 = 3.0 eV. Note that Arima et al [8] report difference data normalized by the measured
total intensity, although from the text we understand the normalization is actually twice the
total intensity. In our fit to data we normalize our calculated �I by 2|Fc|2.

A superior description of the energy dependence of �I is possible with fu �= 0, for then
�I contains both d ′

2 and d ′′
2 with d ′

2 multiplied by [ fu(−A′B ′′ + A′′B ′) + fc|A|2]. However,
the very simple expression (5.2) with fu = 0 is adequate for a first demonstration of the truth
of our analysis, although the absence of fu somewhat distorts the proper physical significance
of fc.

Values for A and B for (0k0) are obtained from (2.8) and table 1. At (0k̄0) the correct
quantities are A∗ and B∗. Values of the Thomson structure factor were calculated with a routine
that was checked against the Cambridge Crystallographic Subroutine Library, and input data
was taken from Arima et al [5]. Our results for Fc agree with those tabulated by Abrahams
et al [22]. Values of F ′

c and F ′′
c needed in the present calculations are listed in table 1.

Let us consider other quantities that appear in �I/2|Fc|2. A fit of this function to data,
figure 2, was accomplished simply on the basis of the observed extrema in data at E = 7112 and
7115 eV. Data for a reflection (0k0) provides one relation between J and fc , and one relation
between fc and d ′

1hg , and only d ′
1 is independent of the Miller index. In addition to six pieces

of information from three reflections, we have calculated values for A, B and Fc. The value
extracted from the fit to data for the ratio fc(020)/ fc(040) = 1.26 is in excellent agreement
with the ratio of cos 2θ at the two reflections, which is the functional dependence anticipated
on the basis of our calculation (sin θ = kλ/2b and λ/2b = 0.093). We also obtain the estimate

9
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fc(020) ≈ −0.014, with the sign determined by the absolute sign of�I which is not known to
us. Remaining multipoles in �I occur together with a factor d ′

1 = −�1/(�1 −�2) ≈ −300.
We find, d ′

1hc ≈ −0.30, d ′
1hu(020) ≈ 67.0, and d ′

1hg(020) ≈ 0.020. The relatively large value
of hu fits with the known large Fe displacement from the centre of the oxygen octahedron along
the b-axis [5], and the magnetoelectric effect [3, 5].

As a guide to the values expected for hc and fc we calculate corresponding quantities for
K-shell absorption by an isolated ion with the electron configuration 6S. In this extreme case,
parity-even multipoles with K > 0 vanish, because the orbital angular momentum is exactly
zero. The only multipole that contributes is

〈T 0
0 〉 = 1/

√
(2l + 1), (5.3)

where l is the angular momentum of the valence shell. We find

hc = (4/3)({R}sp/a0)
2(m�a2

0/h̄
2), (5.4)

and

fc = (1/15)(q{R2}sd/a0)
2(m�a2

0/h̄
2) cos 2θ. (5.5)

If the magnitude of fc in (5.5) is taken to be 0.014, implied by the foregoing analysis of data,
one finds {R2}sd/a2

0 ≈ 0.015 which is a factor 5.8 larger than an estimate of the radial integral
made with hydrogen wavefunctions and a charge = 26, and 16.0 larger than the estimate
obtained from an atomic code [23]. The atomic code estimates {R}sp/a0 = 0.0035 and with
this value (5.4) yields d ′

1 ≈ −68. These findings reinforce the notable successes of (5.2),
with its excellent description of experimental data together with transparency as to its physical
content.

To round off this section on resonant Bragg diffraction we discuss differences between
our analysis and the one offered by Arima et al [8]. These authors aim to make sense
of two principal features in their data, reproduced in figure 2: (i) a magnetic background
that depends weakly on the x-ray energy, and (ii) similar peak-to-peak values of normalized
resonant intensities at (020) and (040). Arima et al [8] appeal to the purely (spin) magnetic,
high-energy limit of the scattering length to estimate feature (i), and then turn to a parity-odd
and time-odd contribution to resonant scattering from the E1–E2 event (a contribution here
denoted by fg) to estimate feature (ii). Of course, all features in the data, including (i) and
(ii), must derive from a single unique scattering length, to be found in cited references [18]. An
achievement of our work is a unified, rather than piecemeal, analysis of the data. It immediately
reveals important interference contributions to scattering. We also nicely describe the energy
dependence which Arima et al [8] do not mention in their analysis.

In our analysis, interference between Thomson scattering and the low-energy tail of the
E1–M1 resonant event, proportional to hg , accounts for feature (i). Among values for the
multipoles inferred from data hg is by far the smallest multipole, a finding which fits with
what is anticipated from a magnetic event that involves M1. Interference is also responsible
for feature (ii). Referring to (5.2), the peak-to-peak value at resonance is determined by
interference of charge scattering in E2–E2, fc A(0k0), and magnetoelectric scattering in
E1–M1, hg A(0k0). The ratio of hg fc|A(0k0)|2 ∝ cos(θ) cos(2θ)|A(0k0)|2 between (020)
and (040) is 0.09, that together with normalization |Fc(040)|2/|Fc(020)|2 = 8.9 gives a
ratio 0.83 between the normalized peak-to-peak resonant intensities at the two reflections, in
complete accord with data. Note that this good result depends simply on the derived Bragg-
angle dependence of the charge and magnetoelectric multipole contributions to scattering, not
on the inferred magnitude of multipoles, which builds confidence in the truth of our analysis.

10
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6. Conclusions

We have constructed an atomic model of Fe ions in gallium ferrate (GaFeO3) and used it to
analyse observations made on the exemplar multiferroic compound with optical and x-ray
techniques. While held at a low temperature, GaFeO3 hosts spontaneous polar and magnetic
order [1], and the magnetoelectric effect [3, 5]. A pyroelectric effect in GaFeO3 which is
allowed by the polar crystal class, C2v , has not been observed, to the best of our knowledge.

Use in recent experiments [6–8] of a single crystal of gallium ferrate experiencing an
applied magnetic field permits an unambiguous isolation of electron properties that are changed
on reversal of the direction of time. In our analysis, electron properties with this time signature
are expressed in terms of magnetic multipoles, and magnetoelectric multipoles that do not exist
in a compound with a centrosymmetric structure. Dichroism observed in the energy interval
1.0–2.5 eV [7] and near the Fe K edge [6] is here attributed entirely to parity-odd, time-odd
magnetoelectric multipoles. In fact, observed signals are the sum of two non-reciprocal dichroic
signals often called magnetochiral and non-reciprocal linear dichroic signals.

Bragg diffraction enhanced by a resonance near the Fe K edge [8], according to our
analysis, includes interference between Thomson scattering and E1, M1 and E2 absorption
processes, which has not hitherto been observed. The E1–M1 event is important in practice for
events forbidden by the selection rules for pure electric processes, which indeed is the case.
By successfully comparing our calculated intensity with experimental data we demonstrate in
diffraction the pivotal role played by polar and magnetoelectric contributions from the E1–M1
event, both of which only exist because GaFeO3 possesses a non-centrosymmetric structure.
The polar contribution is found to be relatively large, which fits nicely with a measured large
magnetoelectric effect [3, 5] and measured large displacements of Fe ions from centres in iron–
oxygen octahedral units [5].
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Appendix. Unit cell structure factors

We describe calculations of unit cell structure factors, F , using previous analytic results for the
scattering length, which is expressed in units of re [13, 14]. The structure factors provide the
functions that appear in (5.1), namely,

Z(E1–E1) = ({R}sp/a0)
2(m�a2

0/h̄
2)F(E1–E1) = Ahc,

Z(E1–M1) = (q{R}sp{1}γ γ )F(E1–M1) = iBhu + Ahg,

Z(E2–E2) = (q{R2}sd/a0)
2(m�a2

0/h̄
2)F(E2–E2) = A fc + iB fm

and

Z(E1–E2) = (q{R2}sd{R}sp/a
2
0)(m�a2

0/h̄
2)F(E1–E2) = iB fu + A fg,

with a0 the Bohr radius. All scattering occurs in the unrotated channel of polarization, as we
shall see.

The generic form of a parity-even unit cell structure factors is

F =
∑

K

XK · DK ·ΨK . (A.1)

11
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The three spherical tensors of rank K in (A.1) are as follows: XK describes properties of the
x-ray beam, DK is a rotation that establishes the setting of the crystal with respect to axes
that define the plane of scattering and states of polarization, and ΨK is a structure factor from
section 2. Values of XK that are appropriate for E1–E1 and E2–E2 events are listed in [14].
Following the convention in [14], we define axes (xyz) for the experiment such that, the plane
of scattering is spanned by x–y, with the Bragg wavevector (hkl) in the opposite direction to
the x-axis, and σ -polarization parallel to the z-axis. In the experiment of interest, the c-axis is
parallel to the z-axis so DK makes (0k0) parallel to −x with a rotation by π/2 about the c-axis
and it amounts to a simple multiplicative phase factor exp(iQπ/2).

Taking X K
Q from [14] a simple calculation leads to,

Fσ ′σ (E1–E1) =
∑

K Q

(−1)Q X K
−QeiQπ/2�K

Q

= {
X0

0�
0
0 + X2

0�
2
0

}
, (A.2)

which is independent of the Bragg angle, θ . From (2.1) and (2.4),

�K
0 = 2[1 + (−1)k]A〈T K

0 〉, (A.3)

and contributions to scattering occur for even k. Fπ ′σ (E1–E1), and Fπ ′σ (E2–E2), contain �K
Q

with odd Q and it vanishes for even k. In the unrotated channel the unit cell structure factor for
an E2–E2 event is

Fσ ′σ (E2–E2) = 1

2
√

5
cos(2θ)

[

�0
0 −

√
5

14
�2

0 − 2

(
2

7

)1/2

�4
0

]

− 1

2

(
3

7

)1/2

�2
+2 + 1√

7
�4

+2 + i

2
√

10
sin(2θ)

[−�1
0 + 2�3

0

]
. (A.4)

The results (A.2) and (A.4) establish properties of Z(E1–E1) and Z(E2–E2) that are used
in section 5. As one example, we give the explicit expression for fm obtained from (A.4),

B fm = (q{R2}sd/a0)
2(m�a2

0/h̄
2)

1

2
√

10
sin(2θ)

[−�1
0 + 2�3

0

]
, (A.5)

where �K
0 with odd K is taken from (2.1) and (2.5). For absorption at the K edge, 〈T 1

0 〉 is
proportional to the orbital angular momentum in the 3d shell, and 〈T 3

0 〉 is proportional to the
orbital octupole in the 3d shell [14, 21].

We have observed that parity-even contributions to π ′σ diffraction are forbidden because
the x-ray factor in (A.1) is different from zero for odd Q while �K

Q given in (2.1) is identically
zero for odd k + Q. A similar selection rule forbids parity-odd contributions to π ′σ diffraction.
For E1–E2 and E1–M1 events the π ′σ x-ray factors are different from zero for even Q while
�

K ,u
Q and �K ,g

Q given in (2.2) and (2.3), respectively, vanish for even k + Q. The absence of
π ′σ diffraction is a consequence of the particular setting of the crystal and for Bragg reflections
other than (0k0) it can be different from zero.

The parity-odd unit cell structure factor Fσ ′σ (E1–E2) is a linear combination of �K ,g
Q and

�
K ,u
Q with K = 1, 2 and 3 and Q = ±1. Using results in [14] we find,

Fσ ′σ (E1–E2) = 1
5

√
6{cos θ�1,g

+1 + sin θ�1,u
+1 } + 4

5

(
2
3

)1/2 {cos θ�3,g
+1 + sin θ�3,u

+1 }
+ i

(
2
15

)1/2 {cos θ�2,g
+1 + sin θ�2,u

+1 } (A.6)

Contributions to Fσ ′σ (E1–E2) by polar (magnetoelectric) multipoles have sin θ (cos θ ) as a
common factor and they form iB fu (A fg), where fu and fg are sums of purely real multipoles.
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Multipoles in the E1–M1 event have rank K = 0, 1 and 2. However, K = 0 does not
contribute in Fσ ′σ (E1–M1) because Q = ±1. From results in [13] we are able to show that

Fσ ′σ (E1–M1) = −2{cos θ�1,g
+1 + sin θ�1,u

+1 − i(cos θ�2,g
+1 + sin θ�2,u

+1 )}. (A.7)

In common with (A.6), this expression is of the form (iBhu + Ahg) in which hu and hg are
purely real multipoles.

The setting of the crystal used to measure a reflection (0 − k0) differs by a rotation of π
about the z-axis from the setting used above for the reflection (0k0). Such a rotation makes
two changes to structure factors (A.2), (A.4), (A.6) and (A.7). First A → A∗ and B → B∗
because the direction of the crystal b-axis is reversed by the rotation and φ → −φ in (2.8).
Secondly, parity-odd unit cell structure factors change sign because the rotation about the z-
axis introduces a phase factor (−1)Q and Q = ±1 in (A.6) and (A.7). Parity-even structure
factors involve only even Q and remain unchanged on rotation of the crystal.
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